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Abstract

For a locally compact Hausdorff space X, M(X), the space of bounded
regular Borel measures on X, is a Banach space which can be made
into a Bananch algerbra by defining the convolution(uy) — pv by sy =
JIA (x) dv (y) where &, is a probability measure. We define L(X) to
be the set of all measures u on X for wich the function x — | w| %o, is

weakly continuous. We shall study some aspects of L(X).\V
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1. introduction.

The purpose of this paper is to study some
aspects of hypergroups. The idea of convolution
operator on a locally compat space goes back a log
time ago, and the historical points can be found in
Ross [10].

In early seventies three mathematicians have
been concerned with this theory. Dunkl (3], and
spector [2] use the term hypergroup for their
systems while Jewett [6] calls them convos. We
shall adopt Dunkl’s axioms.

Throughout X will be a

Hausdorff S0IMEe

notations of [3]. The spaces C.(X), Cy(X) and

locally  compact

space. We reacll standard
C,(X) will denote the space of continuous complex
valued functions with compact support, the spiace
of continuous complex bounded functions and the
space of complex continuous functions vanishing at
infinity on X each of them with uniform norm. The
dual space of C,(X) is just M(X), the space of
finite regular Borel measures on X and MF(X) will
denote the set of positive probability measures on
X, €.

—{u| p € MEX)uX) =

i
3 functional x at an elemet f will be denoted by x(f)

1}. The walue of a

&.
§and thus u(f) = [ fdu. We use the familiar symbol
c

g_al, for the special functional f — f(x). The

s support of a measure 4 will be denoted by suppu.

On M(X) we defline the
%9, )ﬂ'y (X}dv(v),
probabilitly measure on X and 4

this definition M{X)

convolution by
where J‘ru}'l 15 &
:A{r.v?' With
convoltuion

Jiwy = If &

iyl
becomes @

[ Downloaded from jsci.khu.ac

Bananch algebra and X is called a commutative

hypergroup. Our defintion is based on [3] and [8]

Propostion L.1.

With the addtion, the above convolution an
measure norm, M(X) 15 4 commutative Banac
algebra. Mereover, M P{X ) - MF{XJ =M !J{.‘E'J [3].

The last part of this propostition states th:
Mp{X} is a semigroup. We note that forxy € X w
have ﬁx; cﬁy = MP{XJ, and write A
M p{X i [3]:

() = rrl-ttfj.'-l}_ [

definition 1.2.

For ¢ € C{fX,J Lk X, 4 € M(X) define th
function x — Rx)y by Rixhj(v)= i.rhﬁ[a_fr} an
the function g — R(u)yw by

Ryp(y) = [Rez)p(yldu(z) (v € X)

Lemma 1.4.

If (u.), is a net such that u — u in th
weak -topology then u «v — uw in th
wcﬁk'—tupulc}g}r for all 4 € M{X),

The proof of the above lemma is a dire
consequence ol the loregoing proposition an
therefore omitted.

Our main interest is o isolate a subalpebra ¢
MiX) which reduces to LL{G‘J when A=, 18

locally compact group.

Definition 1.5,
We define LX) to be the set of all measuie
HEM(X) such that the [unctionx — [u| «d, |

weakly continous from X into M(A7).
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b.
At only & subalgebra of M(X) but also
4(X).
—
S= U supp
HEL(X)
1.7.

yspace S has a hypergroup structure.

, & 5, and Let ( L"uJ,q‘Vﬁ} he two nets of

ghbourhoods of xy respectively. Then

. pets of positive measures (#4,): {vji} in

ch  that  suppp I:‘EI’J:I, Suppt-'ﬁEVﬁ and

el =1 Clearly A, ., 1 equal to the
i {ry)
(qunnﬁ}_ Since M. v}.}EL{X}.

—1.(X) and therefore .u:eppuim}ES. Thus

eC :,{S ) we must show
isin C_‘.hfoSj

mit  of
(0= 1. Now, let ¥
 [uniction (xy) — [gwd J.{_u}_}
—s f ‘P‘ﬂmw
lying the T

come Aspects of Hyperg

is in C_(§) for every yES.

jelze extession theorem to the
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Thorem 1.8.
There exists a nel in L(X) wich is positive and 1%

a weak approximate identity of norm 1 for L(X).

Proof.
Let U/ be a eompact neighhnufhnod of e. Let 4

be the collection of all compact neighbourhoods of

in U which for
) bC 2 net of positive

¢ contained ms a directed set with

<ol inclusion order. Let (v,
normalized measures in L(X) which is suppmtﬂd in
= 0. Leth € M(X) and

(U and thus v (X\a)
|l = &,
x| e =0 — hiu)| <eh s 2

¢. So there is.an aﬂEA such that

e>0. Singe x— 15 weak-continuous

(neL(X)). N
neighbourhood of

g, eN. Let a=ay Then

| higesy ) — hip) | =
LI Flf_,utdm}dwu{x“j = J. h{u}.‘iva{x]ll

:EIUU |l ) — )| dv  (x) <€

Theorem 1.9.

There exists a net in L(X) which is a positive

te identity of norm 1 for L(X).

Jint compactification of X, we can find an approxima
—
of y,; of ¥ to X with ¥ € C,(X). Hence
< Proof.
DL% = ‘]‘rx;-ﬂti’ﬂ and thus (xy) — 5 : ! y
_MOJ s in Gyl sxs) for every yES. This e result is a direct cOsequence of the last
g theorem and (]2}, Chapter 10).

leggs the proof.
4

ggneral S is not 1
(= .
g on we restrict our

e rther wor

aded

roup” S Or in O
(=}

.

[ Downl

he whole space X, however

attention o the

+ property of L(X) is the

| =) into L{X).

The most impart=

norm continiuty of x — |

ed some elementaty and also basic

For this we ne

ds we assume that

results,
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Lemma 1.10.
Let y&C (X) and 4 € M(X). Then the function

x— | @ | 0, () is continuous on X [3].

Propositon 1.11.
Let T be a topology an M{X) finer than the

weak -topology. Then the follwing are equivalent.
(i) The functionx — |u [ %4, is T-continuous.

(i) A = {|u| 3, EK} is T-compact for each
compact set KCX,

Proof.

Clearly (i) implies (ii). Now let (ii) hold. Since
the r-topology is finer than the weak-topolgy and 4
is 7-compact, the topologies coincide on {|u| d,
|*€K}. On the other hand the function
x — |u| x4, is weak -continuous [6] inlo
M(X), so it is T-continous when regarded as a map
form K into M(X) for each compact set K. as X is
locally compact, the funciton is r-continous on X,
This completes the proof.

<A Banach space 4 is said 1o have the
@nfnrd - Pettis property if for each Banach space
B%and each W-compact operator T from 4 to
B%‘TK,} is compact in B whenever K is W-compact
iigA4[7]. It is well known that M(X) possesses this
p%perty [12].

S

TBeorem.1.12.
§L¢1 MEL(X). Then the operator R 0 MK) —
MTX) defined by R (v)=usv is a W-compact

nlaaded fr

mapping, where K is a compact subset of X,

Proof.

- By lemma 1.9 the set {u 0 | x € K} is weakly
compact. Thus W - CO { u = 6 | xEK }, the
weak-closed convex hull of {u =« d, |XxEK} s
weak-compact. Also on this set the weak and
weak -toplogies coinside. Now, we know that the
closed-convex hull of {ed, | le| xEK} is the unit
ball of M(X) [6], also R,u is weak -continuous.
Therefore, the image under R, of the unit ball of
M(K) is just W - CO {u = d, |xEK} wich is

weakly compact.

Lemma 1.13.
Let vivy € LX), and K be compact. Then

{vlwzﬁéx |xEK} is norm-compact.

Proof.

Since the set of measures with compact support
is dense in L{X), we may assume without loss of
generality that suppr, = F is compact thus FxK is
M{K) — MiF«K), RP:

compact and R, ;
M(F+K) — M(X) are

woakly compact
operators. Therefore K; = { v,wd, | x€K } is
weakly compact and thus, by the Dunford-Pettis
property va (K, = [ vyovywd | xEK } is

norm-compiict,
Now, We establish a main result.

Theorem 1.14,
Let u€L{X). Then the function x — ped, is
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norm continuous.

Proof.

It is clear from 1.11 and 1.12 that L(X)«L(X) €
Ly(X) the space of all measures u such that
X —= 0, is norm-continuous. Since L(X) has a
bounded approximate identity, we have L({X)=
m C Ly(X), it is also obvious that
Ly(X)SL(X). Thus L(X)=Ly(X),ie. x —> pxd,

i$ norm-continuous,

Finally, we mention a result wich has an exact

parallel in the semigroup case.

Propostion 1.15.
The algebra L(X) has an identity if and only if X
is discrete, in which case the identity element of

LX) is 5{

We have also to mention that there is a one to
one correspondence between the characters and
complex homomorphisms of semigroup algebras. A
modification of the proof 3.1 of [1] shows that
there is a similar relation for LX), namely for each
Fharacter ¢ there is a complex homorphism /s such
§hat gb{x;-#m'ﬂ *0) where uE LX), hiu)=0.
z i)

It is true that hypergroups are the extesion of

gen igroup or zooup algebras to this type of alo»

%r s over locaily compact spaces. However we also

h

Bcnsider soine different type of algbras with
%hﬂ'ltrenl approaches. For this we wait until the end
o g

=l cection 2.

3

a

2. Multipliers and isomorphisms.

This section is devoted to demonstrating results
for L{X} similar to those for group algebras. First
of all it should be noted that, since L(X) has an
M(L{X)) the

multiplier algebra of L(X) is isometrically isomor-

approximate identity of norm 1,

phic to M(X) via the correspondence : u€L(X)
corresponds to the multiplier T if and only if
Ty=v#u,

A multipleir is called unitary if T is onto and an
isometry. First, we characterize the unitary multipl-
iers on L(X). ‘Nuw. we need some elementary

results,

Lemma 2.1.

Let (v ), be a bounded net in L(X) which tends
to v in the strong operator topology,(i. e. v wu—>
veut for ever u€L(X)). Then (v, ), tends to v in the
weak -topology o(M(X), C_(X)).

The proof is not too difficult so it is omitted.

Lemma 2.2.

Let SE, = { k8, | x€X, | k | =1 }. Then
CO [SE,SO] = CO [SE,0] = the unit ball of
M(X).

Note that we mean by CO[SE,SO] the closed
convex hull of SE, with strong operator toplogy,

and the latter is the same with weak -topology.

Lemma 2.3.
Let T be a unitary muliplier on L(X). Then it

can be extended to a unitary multiplier on M(X).
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Proof. So
Because T is a unitary multiplier on L(X) it has k{x}dam = kfea"]-,rqm;,

an inverse T-' wich is also a unitary multiplier.
Thus. there are measures T, T, € M(X) such that
Tu=t=u, T'iyzrlﬁy for u€L(X). Then 6, «u = u
= T17u, so that T s«t=d , and similary, rﬂ‘-,=£'5

Also [|z]| = |7;|] = 1. Define T on M(X) by T
on M(X)} by Tv = tav. Then T has an inverse,
because Sy = 1 v is clearly an inverse to T and is
an isometry because ||v| = ||zrawv|| = |rer|
< ||»|| vEeM(X) for vEM(X). Hence T is unitary

on M(X).

Theorem 2.4.
Let T be a unitary multiplier on L(X). Then
there exists a constant A(|k| = 1) and a

homeomorphism « on X such that

Tu(y) = ku(yoa) (yEC_(X), nEL(X))) (1)
and
i(_—;‘y}w@a} = ':‘(aij,y}{':ﬂ}' (2)
Conversely, if (2) holds then (1) defines a
unitary multiplier 7 on L(X).
—Froof.
—
§ Since | T@)I = 6,1 = 1, T3, is an
N
Sextreme point of the unit ball of M{X), also we
c
O,

:have by lemma 2.3, T(d,) = é,». Thus T(d,) =
_aﬁ AT = k{x}&
§X with (| k| —1] and @ is a function om X to X
E

where k is a complex function on

%Theretﬂre

BT, =T(0,20,)=T(8,)#5, &
g

= k(e)d,, +5, = k!’HHru{gJ,w &

Now, by integration over X we obtain k(x
= kfe), x&X. Thus x — k{x} is a constant k
s-a}'. In the same way, 7! gives rise to a function f
and it is easy to sce that # = a’l. Since
x — O wr=kd )
is weakly continuous, a is continous. Similarly, ]
is continuous, so that o is a homeomorphism
Because T is weak -continous and linear on M{X)
we may extend the formula T(0,) (w) = ko, ) {1
= kdm (yoa) (ye C (X)) from measures of the
form 4, to every g in M(X) to obtain formula (1)
The formula (2) comes [rom the relationshif

T{fjr.ay} (y)y = T{{}.u) - r'}}r () and (1.

Note 1.

We also have T = T(d_ wu) = kd_ = u. This

e}
is a generalization of wendel’s theorem [14]. Tt alsc
siiows that for every unitary multiplier 7, there is ¢
point x € X such that Ty = kd_«u and it is easy
to observe that the point is uniquely determind by

afe),

Note 2,

it can be shown that f{L{X), the group o
isometric multipliers on the commutative algebr:
L(X) is a topological goup in the so-topology

when X is compact we have the follwoing.

Theorem 2.5.
If X is compact, then I{L(X) is compat in the

strong operator toplogy.
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st show that for each u€L(X), the set
| T € I{L(X}} is compact. But B =

| %]

— kud_is contintuous, {k u=d afe) | &

= 1, is a homeo. on X}. Since the

:0. on X} is compact. Now as Lhe set
1} is compact and x — p=d, — Kpwd,

us, {kuxd

(X)) is compact in the strong operator

m]a is a homeo.} is compact.

his completes the proof of the theorem.
ve have
putting x=e, we get
Matwy) = aty
ore a(e)EZ(X) where Z(X), the center

e set {x € X | suppA, ., is a single point

fxy)
y € X}. It follows that the group of

ultipliers is contained in Z{X).

ples.

s section we consider some examples. It
- noted that the most famous examples of
paare the coset space and double coset
aglocally compact group and there are
icgcxamplm in [9].

C 0
x@ shall consider some ather examples.

= [0,1], and define xoy = min{x+y, 1},

om jiF khu.ac.i

a foundation semigroup and L(X) =

:_

a%{af | K €C}, thus with A, ) =,,,.is
iagun hypergoup. Infact L(X) is the

aiof the quotient space LY'[0,1] with the

hypergroup structure with A if x+y=<l1,

(xy) = Cx+y

J‘fx,yJ =0 otherwise. The unitary multiplier group is

just the umnit circle.

II. In [6} another type of convolution was
defined on
YEC (X) and define

a locally compact space X, namely, let

pxv(y) = ,”l Tﬂ’r‘;ﬂdp(x)‘b’{y}

our condition on
T‘P;x.y) (xy € X),
= Y(x)
for some element e of X, then X has a hypergoup

where TYEC,(XxX). With
continuity, if we define lmw(tp) =

with the additional condition that Ty, .,

structure. With this modification the remainging
property of [6] is still valid. More preciesly, if Tisa
lattice isomorphism on compact space X, and 'll’x}'}.
is defined as before, then there exists a continuous
map m of XxX into X and pu such that j’f&ﬂ(w) -
p(my)uixy) where u is a stricltly positive
function on XxX. If we further assume this
multiplication is associative, we conclude that

wimxm(y,z))) = pimmixyk))

for all vEC(X). Thus

mixm(yz)) = m(msy)e).

That is (x,y) —> m(xy) is an associative multipli-
cation which makes X a compact semigroup. The
group of unitary multipliers on X i isomorphic to

CxG where C is the unit circle and G is the gorup
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generated by transiations on X.

IIL It is clear that if X is a locally compact
semigroup with continuous multiplication, then
L(X) = L' (G) @ {K8, | KEC}, thus every comm-
utative locally compact goup is a foundation

hypergroup.

IV. In this final cxample we adapt an intersting
example of [4] which is very suitable to our
purpose in a very general sense. For notation we
refer to [4], however, we explain very briefly some
essentail points. Let /=D%g be the Sturm-Lioville
operator acting on R and g be a bounded variation
function such that the function p(x)=(1+ || ygx)
is integrable on R. Define M, (R) to be the Banach
space of measures on R with norm [ u| =
Jpwit)d | p |(t), where w is a positive continuous
increasing funtion on [0, «]. For each y, Ty is the
unique solution of the system

{LBl)u = (IBL )u,

u(0) = Y, () (50) = By(x)

whene [ is an identity and B is the given operator
which defines the boundary conditions. Since Ty is
the unique solution of the above equation, Ty (x,0)
= y(x). We put the additional restriction Tyw>0
whenever ¥>(0. Now we define Amy}{w}=ﬂp{x, ¥)
and the convoltution is defined by uww(ip) = (uv)
(Ty). Thus R has a hypergroup structure with
identity zero and weight norm defined by ||u | = [

w(t)d | | (1).
The algebra L(R) is y'(R)®{kd, | keC} we

w!(R) consists of the absolutely continous me

ures in M, (R). By our Theorem L(R) has a boi

ded approximate identity and in this case L(R) |

semi-simple algebra.

V. The most interesting hypergroups h
invariant measures [3]. In this case L{X) is j
LY X.m)@{kd,|kEC} where e is the identity of
Thus all of our results CAITY over Lo L[{J[’,m}. T
interesting question is : Under what conditic
LY(X,m) "is" a goup algebra?

In [9] we have studied the second dual algel
of a hypergoup, and in other paper we h:
developed some isomorphism-problems on LX)
the second dual of L{X), which has not be

appeared so far.
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